3 and 4 .Determinants and Matrices
easy

કિમત મેળવો : $\left[\begin{array}{cc}a & b \\ -b & a\end{array}\right]\left[\begin{array}{lc}a & -b \\ b & a\end{array}\right]$

A

$\left[\begin{array}{cc}a^{2}+b^{2} & 0 \\ 0 & a^{2}+b^{2}\end{array}\right]$

B

$\left[\begin{array}{cc}a^{2}+b^{2} & 0 \\ 0 & a^{2}+b^{2}\end{array}\right]$

C

$\left[\begin{array}{cc}a^{2}+b^{2} & 0 \\ 0 & a^{2}+b^{2}\end{array}\right]$

D

$\left[\begin{array}{cc}a^{2}+b^{2} & 0 \\ 0 & a^{2}+b^{2}\end{array}\right]$

Solution

$\left[\begin{array}{cc}a & b \\ -b & a\end{array}\right]\left[\begin{array}{lc}a & -b \\ b & a\end{array}\right]$

$=\left[\begin{array}{cc}a(a)+b(b) & a(-b)+b(a) \\ -b(a)+a(b) & -b(-b)+a(a)\end{array}\right]$

$ = \left[ {\begin{array}{*{20}{c}}
  {{a^2} + {b^2}}&{ – ab + ab} \\ 
  { – ab + ab}&{{b^2} + {a^2}} 
\end{array}} \right]$ $ = \left[ {\begin{array}{*{20}{c}}
  {{a^2} + {b^2}}&0 \\ 
  0&{{a^2} + {b^2}} 
\end{array}} \right]$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.